The generator matrix

 1  0  1  1  1  0  1  1  0  1  1  0  1  1  0  1  1  X  1  1  0  1  1  1  X  1  1  1  0  0  1  1  1  1  0  X  X  0  X  0  1  X  0  1  X  1  1  1  1  0  X  1  1  1  1
 0  1  1  0  1  1  0 X+1  1  1  0  1 X+1  0  1 X+1  X  1  0 X+1  1  0  X  1  1  0 X+1 X+1  1  1  0  X X+1  1  1  1  0  X  1  1  1  0  1  X  1 X+1 X+1 X+1 X+1  1  1  0  1  X  0
 0  0  X  0  0  0  0  0  0  X  X  X  0  0  X  0  X  X  0  X  X  X  X  X  0  X  0  X  0  X  0  X  0  X  0  X  X  0  X  X  0  X  X  X  0  X  X  X  0  X  X  0  X  X  0
 0  0  0  X  0  0  0  X  0  X  X  0  0  X  0  X  0  0  X  0  X  0  X  X  X  X  0  0  X  X  0  0  X  X  X  X  X  0  0  X  0  X  0  0  0  0  0  X  X  0  X  0  0  0  0
 0  0  0  0  X  0  0  0  X  X  0  X  X  X  0  X  X  X  X  X  0  0  X  X  X  0  0  0  X  X  X  X  0  0  0  0  X  0  0  0  X  0  0  0  X  X  0  X  X  X  0  0  X  0  0
 0  0  0  0  0  X  0  X  X  X  0  0  0  0  X  X  0  0  X  X  X  X  0  0  0  0  0  0  X  X  X  X  0  0  X  X  0  X  X  X  0  X  0  X  0  0  0  0  X  0  0  X  X  0  0
 0  0  0  0  0  0  X  X  0  X  0  X  X  0  0  X  0  0  0  X  0  X  0  X  X  X  0  X  X  0  X  0  X  0  0  X  0  X  0  X  X  0  0  X  X  0  0  X  0  0  X  0  X  0  0

generates a code of length 55 over Z2[X]/(X^2) who�s minimum homogenous weight is 48.

Homogenous weight enumerator: w(x)=1x^0+22x^48+96x^50+68x^52+107x^54+56x^56+78x^58+28x^60+28x^62+5x^64+6x^66+8x^68+1x^70+4x^72+4x^74

The gray image is a linear code over GF(2) with n=110, k=9 and d=48.
This code was found by Heurico 1.16 in 0.047 seconds.